Progress in the Hunt for a Malaria Vaccine

Dr Danielle Stanisic
Laboratory of Vaccines for the Developing World
Institute for Glycomics, Griffith University
Why do we need a malaria vaccine?

- In 2018, 405,000 deaths
- In 2018, 228 million cases
- In 2017, for the first time in a decade, the WHO reported an increase in the global incidence of malaria.
- Disruptions to healthcare and control programs caused by COVID could result in a doubling of malaria-related deaths.

Existing control methods (insecticides and anti-malarial drugs) increasingly less effective.
Why don’t we have a malaria vaccine?

Which Plasmodium species should a vaccine target?
- There are 6 species of malaria that infect humans.

What Plasmodium stage should be targeted?

What do we want a malaria vaccine to do?
Requirements: affordable, capable of inducing long-term immunity, well tolerated and non-toxic
- eliminate infection?
- reduce disease?
- prevent transmission?
2 Broad Malaria Vaccine Approaches

Sub-unit vaccines

- Contain a small part of the parasite eg a single protein
- Require adjuvants (substance that enhances immune response)
- Proteins that are targeted are often variable between different parasite strains
- Immune responses often not long-lived
- Low and variable protection
Many different protein targets including proteins conserved between parasite strains
May overcome issues associated with protein variation.

Approaches:

- **Pre-erythrocytic:**
 - Irradiated sporozoite vaccine
 - Chemically attenuated sporozoite vaccine
 - Genetically attenuated sporozoite vaccine

- **Erythrocytic:**
 - Genetically attenuated blood-stage vaccine
 - Chemically attenuated blood-stage vaccine
Evaluation and testing of vaccines

<table>
<thead>
<tr>
<th>Phase</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase IIa</th>
<th>Phase IIb/III</th>
<th>Phase IV</th>
<th>Number of doses</th>
<th>Local application</th>
<th>Immune response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab studies</td>
<td>Animals</td>
<td>Tens Healthy adults</td>
<td>Hundreds Target people</td>
<td>Thousands Target people</td>
<td>Hundreds of thousands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>Minimizing adverse effects</td>
<td>side effects</td>
<td>Effectiveness</td>
<td>Safety monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local application</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prelicensure tests
- Immune response
 - Use challenge model
- Placebo controlled
 - Double-blind
 - Rarer side effects

Postlicensure tests
- Safety monitoring
 - Potential adverse effects

Average time: 12-15 years
Cost: $US200-500 million per attempt.
Leading malaria vaccine candidates

Development of a chemically attenuated whole parasite blood-stage vaccine (PlasProtect)

- Tafuramycin-A binds to malaria parasite DNA and stops it replicating.
- In rodent models, chemically treated parasites \((1 \times 10^6 \text{ pRBC})\) can protect mice from challenge.
- Protection is dependent on CD4+ T cells.
- Red blood cell membranes must be intact for vaccine efficacy.

MF Good et al 2013 J Clin Invest 123(8): 3353-3362
A Raja et al 2016 Infect Immun 84(8): 2274-88
Development and Evaluation of a Chemically Attenuated Malaria Vaccine

1. Pre-clinical Development: Establish protective efficacy and immune mechanisms in a rodent model of malaria.

2. Pre-clinical Development: Develop key reagents for the chemically attenuated vaccine in humans.

Clinical Vaccine Development
Development of *Plasmodium falciparum* cell banks

Required:
- To make the vaccine
- For challenge to examine if the vaccine protects

P. falciparum parasites expanded in transfusion-grade Blood Group O Rh negative red blood cells in the cleanroom at Griffith University and then frozen.

Characterized according to specific release criteria eg sterility, viability of parasites, drug sensitivity profile, viral testing.
Suitable for administration to humans in early phase clinical studies.

DI Stanisic et al 2015 Malaria J 14: 143.
Development and Evaluation of a Chemically Attenuated Malaria Vaccine

1. Pre-clinical Development: Establish protective efficacy and immune mechanisms in a rodent model of malaria.

2. Pre-clinical Development: Develop key reagents for the chemically attenuated vaccine in humans.

Clinical study: Malaria Vaccine

Pilot Study
1. Identify correct dose of chemical to completely attenuate parasite
2. Examine safety and tolerability
3. Does it induce an immune response?

Study participants screened according to inclusion/exclusion criteria
- Healthy males 18-60 years of age
- No history of clinical malaria or travel/residence (>2 weeks) in malaria endemic area within last 12 months
Vaccine Preparation

1. *P. falciparum* cell bank parasites thawed and cultured in Blood Group O Rh D negative red blood cells in cleanroom at Griffith University.

2. Parasites harvested.

3. Parasites treated with Tafuramycin-A.

4. Parasites washed.

5. Chemically treated parasites injected intravenously.
Clinical study: Malaria Vaccine

Study Group B:
Injected with one dose of chemically attenuated parasitised red blood cells
Broad T cell responses are induced by chemically attenuated blood-stage malaria parasites.
Cytokine producing memory T cells increase following inoculation with chemically attenuated blood-stage malaria parasites
Chemically attenuated purified *P. falciparum* blood-stage vaccine

Vaccine has been reformulated
- contains purified parasitised red blood cells

- We have shown in a small pilot study that the fresh, purified form of the vaccine is safe and immunogenic.
Development and Evaluation of a Chemically Attenuated Malaria Vaccine

1. Pre-clinical Development: Establish protective efficacy and immune mechanisms in a rodent model of malaria.

2. Pre-clinical Development: Develop key reagents for the chemically attenuated vaccine in humans.

4. **Clinical Development:** Examine protective efficacy of vaccine in humans.
Phase Ib Efficacy Study (commenced)

Aims

Safety, immunogenicity and protective efficacy following blood-stage challenge

-2 study groups receiving different doses of parasite run sequentially

-1 or 2 infectivity controls per study group

-3 doses of the vaccine on Day 0, 28 and 56

-Challenge one month later with infectious *P. falciparum* blood-stage parasites

-A proportion of vaccinees were fully protected against the challenge infection
Field deployable malaria vaccine

- Field-deployable vaccine = malaria parasites + liposomes
- Protective in rodent models of malaria
- Optimising vaccine candidate
- Produce vaccine candidate for toxicology tests and for clinical studies
Acknowledgements

Institute for Glycomics
Michael Good
Mei-Fong Ho
Sai Lata De
Emily Cooper
Ibrahim El-Deeb
Xue Liu
Bibiana Rodriguez
Jolien Pingnet
Jessica Powell
Nicole Willemsen
Judy Coote
Maryna Brown

QIMRB Institute for Medical Research
James McCarthy
Silvana Sekuloski
Katharine Trenholme

Gold Coast University Hospital
John Gerrard
James Fink
Kylie Alcorn
Johanna Mayer
Lana Sundac
Letitia Gore
Sarah Coghill
Kevin O’Callaghan
Andrew Slack
Hashim Abdeen
Mayur Raniga
Lee Forman
Charisma Dhaliwal
Tim Badrick

Australian Army Malaria Institute
Dennis Shanks
Qin Cheng
Marina Chavchich

Georgia State University
Moses Lee

Mater Hospital
Paul Griffin

Sanaria
Steve Hoffman
Kim Lee Sim
Tao Li
The Study Participants

Funding
Rotary
Rotarians Against Malaria
Perpetual
Merchant Foundation
Atlantic Philanthropies
NFMRI
NHMRC
Zarraffas
MRFF